r***@gmail.com
2014-08-10 10:35:07 UTC
Hi. Apologies in advance for the long post. I am working with a four group exposure and am interested in changes in an outcome from baseline at times 1, 2 and 3. My data (in Stata) is structured like this:
. list if id<5
+----------------------------------------------+
| id time exposure outcome outcome_bl |
|----------------------------------------------|
1. | 1 1 2 34.14907 33.98133 |
2. | 1 2 2 36.89132 33.98133 |
3. | 1 3 2 37.09322 33.98133 |
4. | 2 1 2 24.22013 21.2088 |
5. | 2 2 2 25.23487 21.2088 |
|----------------------------------------------|
6. | 3 1 1 31.93662 32.69796 |
7. | 3 2 1 37.16611 32.69796 |
8. | 3 3 1 33.71714 32.69796 |
9. | 4 1 2 25.69123 25.6259 |
10. | 4 2 2 25.60167 25.6259 |
|----------------------------------------------|
11. | 4 3 2 22.32802 25.6259 |
+----------------------------------------------+
I am using a random effects repeated measures analysis, with the outcome at baseline as a covariate, together with exposure, time and the interaction of time and exposure.
I get a significant main effect of time 4, but not any of the interactions (just) - see output at the end of this message. I did a naive analysis of means to try to understand what was going on:
. gen diff=outcome-outcome_bl
. table exposure time, c(mean diff)
-------------------------------------------
| time
exposure | 1 2 3
----------+--------------------------------
1 | -.0730373 .1984727 .0705481
2 | -.4656163 .1813771 .1950545
3 | -.5124291 -1.245556 .6545261
4 | -1.534946 -.0874589 .847056
-------------------------------------------
Would it be fair when writing up the results below to say that the only significant effect was exposure group 4 at time 1? Or am I misunderstanding the interpretation of the main effect in the presence of interactions?
Thank you
Rena
. xtmixed outcome i.exposure##time outcome_bl || id:
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = -3527.7256
Iteration 1: log likelihood = -3527.7182
Iteration 2: log likelihood = -3527.7182
Computing standard errors:
Mixed-effects ML regression Number of obs = 1405
Group variable: id Number of groups = 688
Obs per group: min = 1
avg = 2.0
max = 3
Wald chi2(12) = 2885.85
Log likelihood = -3527.7182 Prob > chi2 = 0.0000
-------------------------------------------------------------------------------
outcome | Coef. Std. Err. z P>|z| [95% Conf. Interval]
--------------+----------------------------------------------------------------
exposure |
2 | -.3427129 .3312138 -1.03 0.301 -.99188 .3064542
3 | -.2236166 1.019724 -0.22 0.826 -2.222239 1.775006
4 | -1.291953 .5311281 -2.43 0.015 -2.332945 -.2509614
|
time |
2 | .3840982 .3167607 1.21 0.225 -.2367413 1.004938
3 | .1534453 .3200552 0.48 0.632 -.4738513 .7807419
|
exposure#time |
2 2 | .2322221 .3692434 0.63 0.529 -.4914817 .9559259
2 3 | .3565169 .3904371 0.91 0.361 -.4087257 1.12176
3 2 | -1.295537 1.049529 -1.23 0.217 -3.352576 .7615025
3 3 | .2487972 1.249102 0.20 0.842 -2.199398 2.696992
4 2 | .5126085 .6681532 0.77 0.443 -.7969478 1.822165
4 3 | 1.400178 .741296 1.89 0.059 -.0527351 2.853092
|
outcome_bl | .972069 .0181939 53.43 0.000 .9364095 1.007728
_cons | .5444925 .5156786 1.06 0.291 -.466219 1.555204
-------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Identity |
sd(_cons) | 2.194716 .1090333 1.99109 2.419168
-----------------------------+------------------------------------------------
sd(Residual) | 2.335483 .0639805 2.21339 2.46431
. list if id<5
+----------------------------------------------+
| id time exposure outcome outcome_bl |
|----------------------------------------------|
1. | 1 1 2 34.14907 33.98133 |
2. | 1 2 2 36.89132 33.98133 |
3. | 1 3 2 37.09322 33.98133 |
4. | 2 1 2 24.22013 21.2088 |
5. | 2 2 2 25.23487 21.2088 |
|----------------------------------------------|
6. | 3 1 1 31.93662 32.69796 |
7. | 3 2 1 37.16611 32.69796 |
8. | 3 3 1 33.71714 32.69796 |
9. | 4 1 2 25.69123 25.6259 |
10. | 4 2 2 25.60167 25.6259 |
|----------------------------------------------|
11. | 4 3 2 22.32802 25.6259 |
+----------------------------------------------+
I am using a random effects repeated measures analysis, with the outcome at baseline as a covariate, together with exposure, time and the interaction of time and exposure.
I get a significant main effect of time 4, but not any of the interactions (just) - see output at the end of this message. I did a naive analysis of means to try to understand what was going on:
. gen diff=outcome-outcome_bl
. table exposure time, c(mean diff)
-------------------------------------------
| time
exposure | 1 2 3
----------+--------------------------------
1 | -.0730373 .1984727 .0705481
2 | -.4656163 .1813771 .1950545
3 | -.5124291 -1.245556 .6545261
4 | -1.534946 -.0874589 .847056
-------------------------------------------
Would it be fair when writing up the results below to say that the only significant effect was exposure group 4 at time 1? Or am I misunderstanding the interpretation of the main effect in the presence of interactions?
Thank you
Rena
. xtmixed outcome i.exposure##time outcome_bl || id:
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = -3527.7256
Iteration 1: log likelihood = -3527.7182
Iteration 2: log likelihood = -3527.7182
Computing standard errors:
Mixed-effects ML regression Number of obs = 1405
Group variable: id Number of groups = 688
Obs per group: min = 1
avg = 2.0
max = 3
Wald chi2(12) = 2885.85
Log likelihood = -3527.7182 Prob > chi2 = 0.0000
-------------------------------------------------------------------------------
outcome | Coef. Std. Err. z P>|z| [95% Conf. Interval]
--------------+----------------------------------------------------------------
exposure |
2 | -.3427129 .3312138 -1.03 0.301 -.99188 .3064542
3 | -.2236166 1.019724 -0.22 0.826 -2.222239 1.775006
4 | -1.291953 .5311281 -2.43 0.015 -2.332945 -.2509614
|
time |
2 | .3840982 .3167607 1.21 0.225 -.2367413 1.004938
3 | .1534453 .3200552 0.48 0.632 -.4738513 .7807419
|
exposure#time |
2 2 | .2322221 .3692434 0.63 0.529 -.4914817 .9559259
2 3 | .3565169 .3904371 0.91 0.361 -.4087257 1.12176
3 2 | -1.295537 1.049529 -1.23 0.217 -3.352576 .7615025
3 3 | .2487972 1.249102 0.20 0.842 -2.199398 2.696992
4 2 | .5126085 .6681532 0.77 0.443 -.7969478 1.822165
4 3 | 1.400178 .741296 1.89 0.059 -.0527351 2.853092
|
outcome_bl | .972069 .0181939 53.43 0.000 .9364095 1.007728
_cons | .5444925 .5156786 1.06 0.291 -.466219 1.555204
-------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Identity |
sd(_cons) | 2.194716 .1090333 1.99109 2.419168
-----------------------------+------------------------------------------------
sd(Residual) | 2.335483 .0639805 2.21339 2.46431